Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-37605

ABSTRACT

Genotype-phenotype relationships between genetic polymorphisms of DNA repair genes and DNA repair capacity were evaluated in a case-control study of breast cancer. Selected DNA repair genes included were those involved in double-strand break repair (ATM, XRCC2, XRCC4, XRCC6, LIG4, RAD51, RAD52), base excision repair (LIG1), nucleotide excision repair (ERCC1), and mismatch repair (hMLH1). The subjects consisted of histologically confirmed breast cancer cases (n=132) and controls (n=75) with no present or previous history of cancer. Seventeen single nucleotide polymorphisms of 10 genes (ATM -5144A>T, IVS21+1049T>C, IVS33-55T>C, IVS34+60G>A, and 3393T>G, XRCC2 31479G/A, XRCC4 921G/T, XRCC6 1796G/T, LIG4 1977T/C, RAD51 135G/C, 172G/T, RAD52 2259C/T, LIG1 583A/C, ERCC1 8092A/C, 354C/T, hMLH1 5' region -93G/A, 655A/G) were determined by TaqMan assay (ATM) or MALDI-TOF (all other genes). DNA repair capacity was measured by a host cell reactivation assay of repair of ultraviolet damage. The DNA repair capacity (%) did not differ between cases (median 37.2, interquartile range: 23.6-59.6) and controls (median 32.7, interquartile range: 26.7-53.2). However, DNA repair capacity significantly differed by the genotypes of ATM and RAD51 genes among cancer-free controls. Our findings suggest that DNA repair capacity might be influenced by genetic polymorphisms of DNA damage response genes and DNA repair genes.

SELECTION OF CITATIONS
SEARCH DETAIL